Mechanisms underlying kainate receptor-mediated disinhibition in the hippocampus.

نویسندگان

  • M Frerking
  • C C Petersen
  • R A Nicoll
چکیده

Kainate (KA) receptor activation depresses stimulus-evoked gamma-aminobutyric acid (GABA-mediated) synaptic transmission onto CA1 pyramidal cells of the hippocampus and simultaneously increases the frequency of spontaneous GABA release through an increase in interneuronal spiking. To determine whether these two effects are independent, we examined the mechanism by which KA receptor activation depresses the stimulus-evoked, inhibitory postsynaptic current (IPSC). Bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)/KA receptor agonist KA in the presence of the AMPA receptor antagonist GYKI 53655 caused a large increase in spontaneous GABA release and a coincident depression of the evoked IPSC. The depressant action on the evoked IPSC was reduced, but not abolished, by the GABA(B) receptor antagonist SCH 50911, suggesting that the KA-induced increase in spontaneous GABA release depresses the evoked IPSC through activation of presynaptic GABA(B) receptors. KA had no resolvable effect on the potassium-induced increase in miniature IPSC frequency, suggesting that KA does not act through a direct effect on the release machinery or presynaptic calcium influx. KA caused a decrease in pyramidal cell input resistance, which was reduced by GABA(A) receptor antagonists. KA also caused a reduction in the size of responses to iontophoretically applied GABA, which was indistinguishable from the SCH 50911-resistant, residual depression of the evoked IPSC. These results suggest that KA receptor activation depresses the evoked IPSC indirectly by increasing interneuronal spiking and GABA release, leading to activation of presynaptic GABA(B) receptors, which depress GABA release, and postsynaptic GABA(A) receptors, which increase passive shunting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Altered expression of orexin 1 and endocannabinoid 1 receptors of the hippocampus in three pentylenetetrazol, pilocarpine and kainate seizure models

Introduction: Seizure is synchronous and abnormal brain neuronal activity that leads to activation of different receptors capable of enhancing or suppressing seizure activity such as orexin receptor 1 (OXR1) and/or endocannabinoid receptor 1(CBR1). The time of activation for the receptors may influence seizure control. Therefore, this study aimed to investigate the latency for and the change of...

متن کامل

A Critical Role of a Facilitatory Presynaptic Kainate Receptor in Mossy Fiber LTP

The mechanisms involved in mossy fiber LTP in the hippocampus are not well established. In the present study, we show that the kainate receptor antagonist LY382884 (10 microM) is selective for presynaptic kainate receptors in the CA3 region of the hippocampus. At a concentration at which it blocks mossy fiber LTP, LY382884 selectively blocks the synaptic activation of a presynaptic kainate rece...

متن کامل

Pertussis toxin prevents presynaptic inhibition by kainate receptors of rat hippocampal [(3)H]GABA release.

Kainate receptors are ionotropic receptors, also reported to couple to G(i)/G(o) proteins, increasing neuronal excitability through disinhibition of neuronal circuits. We directly tested in hippocampal synaptosomes if kainate receptor-mediated inhibition of GABA release involved a metabotropic action. The kainate analogue, domoate (3 microM), inhibited by 24% [(3)H]GABA-evoked release, an effec...

متن کامل

Maturation of kainate-induced epileptiform activities in interconnected intact neonatal limbic structures in vitro.

In vivo studies suggest that ontogenesis of limbic seizures is determined by the development of the limbic circuit. We have now used the newly-developed in vitro intact interconnected neonatal rat limbic structures preparation to determine the developmental profile of kainate-induced epileptiform activity in the hippocampus and its propagation to other limbic structures. We report gradual alter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 22  شماره 

صفحات  -

تاریخ انتشار 1999